Ph.D. Research Proficiency Exam: Ali Tehrani

Ali Tehrani
Monday, May 22, 2023 - 2:00pm
Event Type: 

Learning Intermediate Representations using Graph Neural Networks for NUMA and Prefetchers Optimization

There is a large space of NUMA and hardware prefetcher configurations that can significantly impact the performance of an application. Previous studies have demonstrated how a model can automatically select configurations based on the dynamic properties of the code to achieve speedups. This research demonstrates how the static Intermediate Representation (IR) of the code can guide NUMA/prefetcher optimizations without the prohibitive cost of performance profiling. We propose a method to create a comprehensive dataset that includes a diverse set of intermediate representations along with optimum configurations. We then apply a graph neural network model to validate this dataset. We show that our static intermediate representation based model achieves 80% of the performance gains provided by expensive dynamic performance profiling based strategies. We further develop a hybrid model that uses both static and dynamic information. Our hybrid model achieves the same gains as the dynamic models but at a reduced cost by only profiling 30% of the programs.

Committee: Ali Jannesari (major professor), Samik Basu, Myra Cohen, Robyn Lutz, and Hongyang Gao

Join on Zoom: