-
Gnanakumar Thedchanamoorthy, Michael Bewong, Meisam Mohammady, Tanveer A. Zia, Md Zahidul Islam:
UD-LDP: A Technique for optimally catalyzing user driven Local Differential Privacy.
Future Gener. Comput. Syst. 166: 107712 (2025)
-
M. A. P. Chamikara, Seung Ick Jang, Ian J. Oppermann, Dongxi Liu, Musotto Roberto, Sushmita Ruj, Arindam Pal, Meisam Mohammady, Seyit Camtepe, Sylvia Young, Chris Dorrian, Nasir David:
Towards Usability of Data with Privacy: A Unified Framework for Privacy-Preserving Data Sharing with High Utility.
AsiaCCS 2025: 790-806
-
Shuya Feng, Meisam Mohammady, Hanbin Hong, Shenao Yan, Ashish Kundu, Binghui Wang, Yuan Hong:
Harmonizing Differential Privacy Mechanisms for Federated Learning: Boosting Accuracy and Convergence.
CODASPY 2025: 60-71
-
Qin Yang, Nicholas Stout, Meisam Mohammady, Han Wang, Ayesha Samreen, Christopher J. Quinn, Yan Yan, Ashish Kundu, Yuan Hong:
PLRV-O: Advancing Differentially Private Deep Learning via Privacy Loss Random Variable Optimization.
CoRR abs/2509.06264 (2025)
-
Kane Walter, Meisam Mohammady, Surya Nepal, Salil S. Kanhere:
Optimally Mitigating Backdoor Attacks in Federated Learning.
IEEE Trans. Dependable Secur. Comput. 21(4): 2949-2963 (2024)