Lunch-n-learn: Deep Learning and Differential Equations

Hailiang Liu
Thursday, September 12, 2019 - 12:00pm to 1:00pm
216 Atanasoff Hall
Event Type: 

\Users\hliu\Desktop\2011_teaching\liu_files\image001.jpg   Dr. Hailiang Liu, Department of Mathematics

Deep learning is machine learning using neural networks with many hidden layers, and it has become a primary tool in a wide variety of practical learning tasks.   In this talk we begin with a simple optimization problem, and show how it can be reformulated as gradient flows, which in turn lead to different optimization solvers.  We further introduce the mathematical formulation of deep residual neural networks as a PDE optimal control problem. We state and prove optimality conditions for the inverse deep learning problem, using the Hamilton-Jacobi-Bellmann equation and the Pontryagin maximum principle.

Please join us for the Brown Bag Lunch and Learn in 216 Atanasoff at 12 - 1 pm.