
COMS 1270 TEST-OUT, FALL 2024
Thursday, August 22, 8:00a-10:00a

Wednesday, August 28, 7:00p-9:00p
B0029 Atanasoff

Introduction to Computer Programming
Pre-requisites: Credit or concurrent enrollment in
MATH 1400 or higher.

Introduction to computer programming with an
emphasis on problem-solving. Topics include:
program structures, expressions, variables,
decision and logic, iteration, collections, input,
and output. Program construction and testing.
Programming assignments including games and
applications. No prior programming experience
necessary.

You will be billed $100 on your University Bill a
week after the test is completed, no matter the
outcome--failure to show up, failing the test, or
passing the test.

The format of the test is pencil-and-paper. All of
the problems will require writing actual, working
code. The test will be graded by hand, and partial
credit may be given for partially correct solutions.

The test is offered in Python or Java. However, if
you know C, C++ or Javascript, you can take the
Python version and answer the questions as best
you can in C, C++, or Javascript.

You must bring your ISU student ID to be admitted
to the test. Plan to arrive a few minutes before the
start time so you can get checked in and be ready
to begin on time. This is a timed exam and no late
arrivals will be allowed.

Please check your ISU email two days in advance
of the exam to verify location.

Please see the practice problems attached to this
flyer to assess whether you might want to take
the COM S 1270 test-out.

Procedures

Test-Out Registration

Course Description for COMS 1270

csdept@iastate.edu

COM S 1270 is one of the pre-requisites for COM
S 2270. If at all possible you should take the test
on Thursday, August 22 so that adjustments to
your class schedule can be made before classes
start on the 26th.

Students may attempt the test-out for COMS 1270
even if they have previously taken the course or
1270 test-out. Test-out results do not replace a
grade received for a previously taken class. Test-
out may be taken only once per semester.

Guidance

Sample Problems

Register for the test-out examination at least one
day before the exam date. Use this link to
register:
https://iastate.qualtrics.com/jfe/form/SV_cMd9hdh9Y1uzEPQ

Testing out of Com S 127

Com S 127 is the introductory programming course for students in Computer Science who have
little or no previous programming experience. If you have already taken a high school or
community college programming course, or if you have other prior experience, you should
consider taking the test-out for Com S 127 and starting with Com S 227.

The format of the test is pencil-and-paper. All of the problems will involve writing actual code.
The test will be graded by hand, and partial credit may be given for partially correct solutions.
Some sample problems are given below.

The test will be offered in Python or in Java. If you know C, C++, or Javascript, you can take
the Python version and answer the questions as best you can using C, C++, or Javascript.

The following sections provide detailed information about the test. There are two descriptions
with sample problems, one for the Python version and one for the Java version.

Specific test information (Python version) and sample problems

Basic skills covered by the test:

 Declaring and using local variables
 Basic input and output
 Integer division and modulus operations
 Calling functions or methods (e.g. library functions, or functions defined in a different

module, or methods of the string and list types)
 Defining functions according to a specification
 Conditional logic and Boolean operators
 For-loops
 While-loops
 Nested loops
 Strings, string operations
 Lists, list operations, creating lists

The test does NOT include:

 In-depth coverage of object-oriented programming beyond that required to use basic
language features and utilities. E.g., in Python you need to understand how to use objects
such as lists and strings, but you would not be expected to define your own classes.

 Programs requiring global data (file-scope or class-scope variables)
 Dictionaries or sets
 Reading/writing external files

Sample problems

1. Write a Python function count_vowels that, given a string, returns the number of vowels in
the string (a character is defined to be a vowel if it is one of 'a', 'e', 'i', 'o', or 'u' or the uppercase
equivalent). For example, given string "Aardvark", the function returns 3.

def count_vowels(s):
 # TODO

2. A Lucas sequence is a sequence of integers in which each number (except the first two) is the
sum of the previous two numbers in the list. The first two are arbitrary. Write a Python function
is_lucas_sequence that takes a list of integers and returns True if the list is a Lucas sequence,
and False otherwise. The function returns True for any sequence of two or fewer numbers. For
example: given the list [-7, 5, -2, 3, 1, 4, 5], the function should return True.

def is_lucas_sequence(my_list):
 # TODO

3. Donuts are $1 each or $10 for a dozen. Coffees are $1.50 each, but you get a free coffee for
each dozen donuts you buy. Write a Python function coffee_break that, given the desired
number of donuts and coffees, returns the (best) price. For example: for 33 donuts, the function
returns $29, since 33 is two dozen plus 9 single donuts. For 33 donuts and 4 coffees, the
function returns 31.50: since a dozen costs only $1 more than 9 singles, and that's less than the
cost of a coffee, you'd buy three dozen and pay 1.50 more for the fourth coffee.

def coffee_break(num_donuts, num_coffees);
 # TODO

4. Suppose you are given a module named foo that includes the coffee_break function above.
Write a user interface that obtains from the console the desired number of donuts and coffees,

and returns the price. A sample interaction should look like this, where the values in bold are
entered by the user:

 How many donuts? 33
 How many coffees? 4
 Your price is: 31.5

5. Suppose you are given a module named foo that includes a function is_purple(n). What it
does is: given any integer n, it returns True if the number is "purple" and False otherwise. We
don't know what a "purple" number is, but we don't care, since this function is given to us! Write
a Python function that, given an upper bound max, returns a list containing, in order, all the
purple numbers between 0 and max, exclusive.

def find_purple_numbers(max):
 # TODO

6. Consider the Python function:

def mystery(x, y):
 result = False
 if x > y:
 if y != 0:
 result = True
 if x == 0:
 result = True
 return result

Notice that the function includes three conditional ("if") statements. Rewrite the function so that
it produces exactly the same results, but does not include any conditional statements. (Partial
credit may be given if you do it with just one "if" statement.)

7. Write a Python function print_pattern that, given any positive number n, produces n lines
of output in the pattern illustrated below for the case n = 5:

5 4 3 2 1
4 3 2 1
3 2 1
2 1
1

def print_pattern(n):
 #TODO

Specific test information (Java version) and sample problems

Basic skills covered by the test:

 Declaring and using local variables
 Basic input and output; using Scanner for input
 Integer division and modulus operations
 Calling static or non-static methods (e.g. library methods, or those defined in a different

class, or methods of the String and Scanner classes)
 Define static methods according to a specification
 Conditional logic and Boolean operators
 For-loops
 While-loops
 Nested loops
 Strings, string operations
 Arrays, creating arrays

The test does NOT include:

 In-depth coverage of object-oriented programming beyond that required to use basic
language features and utilities. E.g., in Java you need to understand how to construct and
use instances of Scanner and arrays, but you would not be expected to define your own
classes.

 Programs requiring global data (static variables or instance variables)
 Maps, Sets, Lists
 Reading/writing external files

Sample problems

1. Write a static method countVowels that, given a string, returns the number of vowels in the
string (a character is defined to be a vowel if it is one of 'a', 'e', 'i', 'o', or 'u' or the uppercase
equivalent). For example, given string "Aardvark", the method returns 3.

class SomeClass {
 public static int countVowels(String s) {
 // TODO

2. A Lucas sequence is a sequence of integers in which each number (except the first two) is the
sum of the previous two numbers. The first two are arbitrary. Write a static method that takes
an array of integers and returns true if the array is a Lucas sequence, and false otherwise. The
method returns true for any array of two or fewer numbers. For example, given the array
[-7, 5, -2, 3, 1, 4, 5], the method should return true.

class SomeClass {
 public static boolean isLucasSequence(int[] arr) {
 // TODO

3. Donuts are $1 each or $10 for a dozen. Coffees are $1.50 each, but you get a free coffee for
each dozen donuts. Write a static method coffeeBreak that, given the desired number of donuts
and coffees, returns the (best) price. For example: for 33 donuts, the function returns $29, since
33 is two dozen plus 9 single donuts. For 33 donuts and 4 coffees, the function returns 31.50:
since a dozen costs only $1 more than 9 singles, and that's less than the cost of a coffee, you'd
buy three dozen and pay 1.50 more for the fourth coffee.

class SomeClass {
 public static double coffeeBreak(int numDonuts, int numCoffees) {
 // TODO

4. Suppose you are given a class named SomeClass, located in package somepackage, that
includes the coffeeBreak function as above. Write a user interface that obtains from the
console the desired number of donuts and coffees, and returns the price. A sample interaction
should look like this, where the values shown in bold represent responses typed by the user:

 How many donuts? 34
 How many coffees? 5
 Your price is: 30.0

5. Suppose you are given a class named Util, located in package somepackage that includes a
static method isPurple(int n). What it does is: given any integer n, it returns true if the
number is "purple" and false otherwise. We don't know what a "purple" number is, but we don't
care, since this method is given to us! Write a static method that, given an upper bound
howMany, returns an array containing, in order, the first howMany purple numbers. You can
assume that all purple numbers are positive.

class SomeClass {
 public static int[] findPurpleNumbers(int howMany) {
 // TODO

6. Consider the method:

 public static boolean mystery(int x, int y)
 {
 boolean result = false;
 if (x > y)
 {
 if (y != 0)
 {
 result = true;
 }
 }
 if (x == 0)
 {
 result = true;
 }
 return result;
 }

Notice that the method includes three conditional ("if") statements. Rewrite the function so that
it produces exactly the same results, but does not include any conditional statements. (Partial
credit may be given if you do it with just one.)

7. Write a static method printPattern that, given any positive number n, produces n lines of
output as shown below for the case n = 5:

5 4 3 2 1
4 3 2 1
3 2 1
2 1
1

class SomeClass {
 public static void printPattern(int n) {
 // TODO

