

Step One: Installing Scratch

To get started me must first download

Scratch from the internet. (if you al-

ready have the program installed on

your computer, you can skip to Step

Two)

Using your favorite web browser, go to

scratch.mit.edu were you will see the

download Scratch button.

Then proceed to select the down-

load for your specific operating sys-

tem. If you are using PC, click the PC

download. If you care suing Mac,

click the mac download.

PC Download

This shows the next window which will

open called “Downloads” and you can

watch the progress of your file down-

loading.

Next you want to install Scratch by dou-

ble clicking on the ScratchInstall-

er1.4.exe file. You may be asked at this

point if you want to allow this program

to make changes to your computer.

Click the Yes button.

By clicking the yes button you will open

the Scratch setup wizard (Figure 3). The

wizard makes the install very simple.

You can choose to let the program in-

stall in the default location on your

hard drive or a different location of

your choosing. Once you decide where

you would like Scratch installed at click

the “Install” button.

Mac Download

Doing so will bring up this window on

your screen. It should look something

like the these images. You might need to

minimize your web browser to see it. You

should click on the scratch icon and drag

it to the applications folder as shown.

Click on Scrath1.4.dmg you have just down-

loaded. This should be located somewhere vis-

ibly or in the downloads folder for your web

browser.

Congrats. You have successfully installed

Scratch! You can now successfully run the

scratch program. You can find this in your

applications folder or by hitting (⌘ +SPACE)

and typing in scratch like shown.

Creating a Background

To create our background we must first

click on the small white box near the

bottom right of the screen that is labeled

“Stage”.

This shows the center section once

“Stage” has been clicked. Next we want

to edit this background, so click the

“Edit” button.

This will open a very basic and simple

editing window. The tools in this editor

are similar to that of the Paint program

we are all familiar with.

Now we want to make a background that

looks like we have many bright stars on a

dark night. To achieve this, first we want

to make the entire background black.

The default color is already set to black;

all we have to do is click the fill tool icon

that resembles a spilling paint bucket and

then click anywhere in the editing area.

Our starts will consist of a small white dot with

two thin lines crossing one another overtop

the white dot. First make one white dot by

clicking on the paintbrush tool icon, and then

select the white color in the color chart that is

second in from the bottom right. Next we

need to choose the size of the dot by clicking

on the shaded button labeled Brush size near

the left center of the screen. Click on the mid-

dle right hand circle as show in Figure 8.

Once you have the small white dot ready, we

can start making our stars. Proceed by clicking

and release once anywhere in the edit area to

make a single white dot. We only need to

make one for now because we can copy it for

the rest of the stars.

Next we need to make the white lines on our

dot to make the stars appear as if they are

gleaming. Click on the Line tool icon and then

again change the brush size to the circle in the

second from the right on the top row as

shown in Figure 9. Once you have the line

tool ready we can make our star glimmer.

When you move

Once you have the line tool ready we can

make our star glimmer. When you move

your mouse over to the editing area, your

curser will change into a plus shape. Like in

Figure 10, place the right side of your curser

so that it just touches the left side of your

dot. Create a small line by clicking and hold-

ing your left mouse button then drag you

curser to the right so that the left of your

curser just touches the right side of the cir-

cle. If done correctly your star will look simi-

lar to that in Figure 11.

To create the second line of each star will

be the same procedure except we will start

with our curser on top of the dot and draw

down. Figure 12 show the completed star.

To copy this start all we have to do is select

the stamp tool icon on the left which allows

up to make a box around our start. The area

that you select around your start should be

as close to the star as possible without

touching it. Once selected you will have a

stamp that you can click anywhere on the

background and create another star. Do this

about 12 to 14 more times and evenly

space apart each star

Creating your Sprites

Sprites are arguably the most important part of anyone’s project in Scratch. Sprites are the

objects that you assign code to. In our game we will use 3 different types of sprites that will

all behave differently

Scratch inserts a default sprite

that looks like a walking cat, but

because we will not use this

sprite in our game we must de-

lete it. As shown in figure 14, to

delete a sprite you must right

click on it thumbnail, in the

bottom right of the window, and

Now we can begin making our own

sprites! First sprit we make will be a sim-

ple ball. To create a sprite we must click

the paint new sprite icon that is right

above where the sprite thumbnails are

located. This brings you to the paint tool

once again. Now that you are familiar

with the paint tool in Scratch, creating

our ball is as simple as selecting a color

and creating a small circle with the el-

lipse tool as shown.

Once you are satisfied with your ball and click ok, then the ball you have created will now

appear in the game area of the main screen. Then we can create the next sprite in the

same way, but this time we will create a paddle type of figure.

Try to create the sprite shown if figure 16

using the paint tool. The paddle must be a

rectangular shape, so using the rectangle

tool is very helpful. Remember that the

paddle must be larger than the ball you

created.

Once you finish with the paddle you

must drag the paddle to the bottom of

the screen as shown.

Now that you understand how the

paint tool works, creating the blocks

will be quite simple. The blocks are

nothing more than a multicolored rec-

tangle. The fill color of the blocks will

be green and the outline of the blocks

will be orange. Figure 18 show how the

completed blocks should look.

Now that you have finished designing

your sprites, then your screen should

look similar to ours in Figure 19.

This is the general look of our game!

Next you will be creating the code for

each sprite, which makes them interact

with each other the user.

Using Existing Sprites

Drawing sprites are hard. It is hard to get a good image from the simple paint options that

Scratch gives. We are going to explore the possibilities with using Sprite files that already ex-

ist.

The first step in creating a sprite with a

existing image is to click “Choose new

sprite from file” button. It is located as

shown.

This will open the file explorer. This

can be used to select any sprite or im-

age you can think of. For this short ex-

ample we use a bird. Double click on

Animals and then select the bird image.

Next Press Ok.

This selection shows the creation of

your new sprite, a pretty (or ugly) bird.

At the bottom an icon for a new sprite

has been added as well as the bird

sprite has been added to the stage..

We've discussed some of the basic control opera-

tions in Scratch, but those have mostly dealt with

beginning your program or some commands. All of

these control operations you may have noticed have

a wave along the top indicating no commands pre-

cede them. Now let’s discuss the other control op-

erations. These operations determine when your

program will execute certain commands. One of the

common ones we will use are the if-statement

blocks and the if-else-statement blocks. In this case

the if statement will execute the statements inside

it's block if the condition in the hexagon is met. The

hexagon, like other functions in Scratch can be filled

with statements that are shaped hexagonally, such

as the and, or, and not operations in operators,

which we will discuss later.

Now that we've discussed some of the key control functions lets
discuss the motion functions. As we've already shown you can
use the move function to cause a sprite to move on the screen,
however there are some other useful functions included in the
motion section.

Control Blocks

The if-else-statement will behave in a similar way except that if the condition in the hexagon

is not met Scratch will skip over the first set of code and move down and execute the code

under the else block. Keep in mind that one of the two blocks will be executed. The

“forever” block runs indefinitely and the “forever if” blocks will run the block of code placed

inside the brackets until the condition is met, and in higher level languages these are com-

monly referred to as loops. While we don't use them extensively in this tutorial loops are ex-

tremely powerful tools in Scratch and most other programming languages. The other com-

mands involve broadcasting, waiting, and terminating statements. Terminating statements

speak for themselves; they will stop the program from running causing the user to need to

start over. Broadcasting and waiting are not discussed in this tutorial.

Motion blocks deal exclusively with moving a
sprite or changing the direction of the sprite.
Most of these functions speak for themselves
and if elaboration is needed it will be in the
index in the back, however there is one thing
worth noting in Scratch. Direction is handled
in an atypical fashion. If a sprite is moving
strait up it’s direction is 0 and if it’s moving
exactly to the right it’s angle is 90 so any
sprite moving up and to the right will have a
direction from 0 to 90. If it’s moving down
and to the right it’s direction will be between
90 and 180. If the sprite is moving up and to
the left it will between 0 and

-90 and anything moving down to the left will
be between -90 and -180.

To begin, lets add a go to 0 and y to 50 to
the code blocks for the ball sprite so that
each time the program is started the ball is
reset to the middle of the screen. Add this
code block underneath the flag function so
that each time the flag is pressed the first
thing it does is reset the ball.

Motion

Before we proceed further we'll talk
about the sensing functions. Sens-
ing and motion commands work
hand in hand in “Breakout” and
many practical programs because it
allows for the condition of the
sprite to change when it senses a
particular event has occurred. In
Breakout we’ll be using these
blocks to sense when the ball hits
another sprite or object. In some
cases it allows for the condition of
the sprite to change when user in-
put dictates it. Using these we can
allow the player to take control of
the paddle at the bottom of the
screen to bounce the ball.

Sensing

That's why now we're going to set all the code for the pad-
dle in one go. To begin click on your paddle sprite in the
bottom left and attach a “forever” block to the flag block.
Now place an “if” command block inside the “forever”
block. Notice how there's an octagonal blank spot on the
“if” statement. As described earlier this is the condition to
be met before the blocks inside the “if” block are executed.
Now, lets click on the sensing button on the left. We're in-
terested in using the “key pressed?” sensing block. Notice
again the hexagonal shape of this block and drag it into the
hexagonal blank spot on the “if” block. When the blank
spot light up on the edges release you mouse to place it as
your if condition. Now, place a “change x by” block from the
motion category inside the “if” block and set the value to -5.
You may have noticed the drop down menu inside the “key
pressed?” block. This allows you to choose a button on a
standard keyboard to satisfy the condition. For our exercise
choose the left arrow key from the drop down menu.
You've just programmed your first if statement! To com-
plete the code for the paddle create a second if statement
and place it directly under the first, but still within the forev-
er statement. Use the same sensing block (“key pressed?”)
and this time choose right arrow from the drop down menu.
Place a “change x by” block inside the if statement and
change the value to 5. The paddle is now ready and coded
for Breakout to try it out press the flag and use the arrow
keys to move it left and right.

The Paddle

You may have noticed that although you can
move the paddle; now the ball reacts to nei-
ther the paddle or the edges. Lets fix that.
Start by reselecting the ball sprite in the
bottom right. Click the motion button and
look for the block labeled “if on edge,
bounce” and place this under your “move”
block. Notice now that if you run the pro-
gram when the ball hits any edge it auto-
matically bounces off.

Place an “if” block underneath your new “if
on edge, bounce” block. To make the ball re-
spond to the paddle we'll go back to the
sensing block and choose a new one called
“touching?” and place it in the hexagonal
blank spot on the “if” block. Then choose
the paddle from the drop down menu.

Finally, pick a “turn degrees” block from the
motion section and place it within the “if”
statement and set the value of the “turn de-
grees” block to 50. Notice that now when
the ball makes contact with the paddle it
bounces off! The current code is a bit unre-
fined and we will be coming back to clean it
up later (so the ball bouncing looks more be-
lievable) once we've discussed some of the
other block types.

The Ball

Operators

Value Operators

These operators are known for their circular or

oval shape. These are the basic value opera-

tors. They are addition, subtraction, multiplica-

tion and division and look something like this.

The biggest thing is these operators corre-

spond to a value. They can fit in anywhere

there are oval shapes. Since each operator

takes circle shapes themselves, this means

they can be stacked. Shown in the examples

are several combinations. Notice we have an

that we have an addition of the result of a

multiplication. Another note that variables

can be used as one of these value operators.

Advanced Value Operators

 A value between the the two values passed to it.

 This is a String operation. Combines the two strings.

 Finds the letter of a String at a certain position.

 Finds the remainder when divided by a number. 12 mod 5 = 2

 Round- Rounds down to the nearest number.

 This can be used to do several advanced math functions.

Value Operators

Boolean operators are true/false values. These are important because they are used pro-

gram control. Now there are two kinds of boolean operators. Boolean operators using val-

ues and boolean operators using other boolean operators.

Boolean operators using values are greater than, less

than and equal to. These operators take a value and

turn it into a boolean.

Boolean operators using other boolean operators are

AND, OR, NOT. These operators take existing boolean

value and return a boolean value. As seen these can be

stacked within each other.

We are going to accomplish this by comparing

the position of the ball with the position that

corresponds to the bottom edge. To do this

we have an if statement with a less than oper-

ator. In the left side we insert the block with

the y position of Sprite 3 (The Ball). Then in-

side the if statement we put at forever loop

with a stop all inside it.

Now we are going to add a game over condi-

tion. What we want to stop the game when

the ball touches the bottom edge.

Then below that if statement, we are going

to insert another if block. This block will

contain a point in direction then the opera-

tor direction—55. We chose the orange col-

or because orange is the outline of all the

blocks. If we want to check to see if the ball

touches the blocks, we must see if it touch-

es orange. Then to similar that it bounces,

we point the ball in whatever direction it was

facing minus 55.

Variables

The variable section contains very few blocks compared to the

other sections, but that doesn’t mean that variable aren’t im-

portant. In fact variable are arguably one of the most im-

portant sections. When you navigate to the variables tab you

may notice there are no blocks. Well, this is because you have

to create a variable first. Let’s try making the “Score” variable

by clicking “make a variable.” Notice that now the blocks you

see to the right are available to you. In this case the “Score”

block will return the current value of the variable this is im-

portant because a value can be changed and saved for use later

on in the program.

List

You may have notice a button directly under “create varia-

ble” called “create list.” We don’t use any lists in breakout,

but they are an important tool so we will briefly describe

their purpose. A list can store several variables inside of it.

For instance in terms of Breakout we could maintain a list

of type “player” in which we could monitor each players’

score. At the press of a particular button we could switch

players by using the “item of” block. Say for instance play-

er one is Billy and player two is Jill. First we add Billy and

Jill to the list using the “add to” block. If Billy is going to

play we could use a sensing block to make it so that if he

presses the “B” key on the keyboard then the list chooses

item 1 from the list, however if Jill presses “j” then we get

item 2 from the list. Lists have many powerful functionali-

ty in Scratch and other programming languages.

The “set to” block manually changes the value of the variable to the input value and the

“change by” block increments or decrements by the value in the blank (to decrement use neg-

ative numbers). The “show variable” and “hide variable” blocks are used to show or hide the

banner on screen that displays the value of the variable.

Adding Score

Now we are going to add a score to our

game. First we what are going to need to

do is create are variable called Score. This

is done in the variables tab.

Now under ball tab we are going to initial-

ize the score to zero. This must be done so

the score does not accumulate from pervi-

ous game. What we do is simple insert set

Score block and type in 0 for a value.

Sound

The sound tab has a few less functions than

some of the other categories. The main block

is the “play sound” block which is usually then

edited through use of the other blocks. Any-

thing from the instrument playing the sound,

to the volume, to the tempo your sound is

playing at can be edited. Keep in mind if the

same sprite is going to be producing more than

one sound that a “stop all sounds” block will

have to be used and a new “play sound” block

put in place.

We’re about to get our first experience with the

“Looks” blocks so let’s run through them quick.

Looking to the left it comes as no surprise that

many of the blocks…change the look of the

sprite. Some of these blocks are more obvious

like allowing you switch costumes (a concept

we’ll discuss at the end of the tutorial) to altering

the size of the sprite. Some that may seem a bit

more complicated are the “say” and “think”

blocks, which cause the sprite to express what’s

typed in the blank as text in the program. In ad-

dition the “set effect to” block allows you to alter

a sprite in any number of ways, and all these

modifications can be cleared with the “clear

graphic effects” block. Two blocks we’ll use a lot

for Breakout are “show” and “hide,” which cause

the sprite to disappear or reappear.

Looks

The Blocks

Now we are going to insert the code for the

block sprites. The first thing is an initializa-

tion page. Create a When State Clicked

block and then add a purple show block like

is shown here.

Next we are going to insert code for when

the ball collides with the block. We want to

create a wait until block with the conditions

show. Then we are going to add a Change

Score block with a 1 for the score. Then this

will be followed by a forever block with hide

in it.

Next likes spice up our game with a bit of

sounds. Create a play note block from the

sound tab. For values we picked 60 and 0.5,

but use whatever suits your taste.

Notice that the areas you can type numbers on
the plus and minus operators also have curved
edges, which means they can also be filled by var-
iables. Go to the motion tab and towards the
bottom select the “direction” block. Scratch
knows that because you are selecting the ball
sprite that this is the direction of the ball sprite.
Place the direction block in the first blank on both
the minus and plus statements you placed earlier.
For the second blank manually type in 90 for both
the plus and the minus blocks. Note that these
blocks will save the value of the balls current di-
rection plus or minus 90 depending on the cur-
rent position of the ball (the current position will
be dealt with later).

Navigate back to the motion tab and select the
“point in direction” block and place one of these
blocks under each “set to” block you placed ear-
lier. Similar to the “set to” blocks earlier we will
fill the blank spaces in the “point in direction”
block with an operator. In this case fill the
blanks in both “point in direction” blocks with a
plus “+” operator. On both plus “+” blocks set
the first blank to 0 manually. For the second
blank on both go to the variable tab and select
the “Angle” block (that is there because you cre-
ated the Angle variable) and place one of these
blocks in the second blank on both of the plus

To finish the code for the bouncing manually en-
ter 90 into the second blank of the greater than
“>” block and enter -90 into the second blank of
the “<” block. Go to the motion section and grab
the “direction” block at the bottom and place
that in the first blank of both the greater than “>”
and less than “<” block. Now the code for the
bouncing is complete feel free to try it out.

Now that most of the mechanics have been
programmed for Breakout lets go back and
refine the code for the ball bouncing off the
paddle. To begin place two empty “if”
blocks inside the “if” statement that has the
“if touching” the paddle condition. In the
top “if” statement place a greater than or
“>” operator block in the condition blank.
In the bottom “if” statement place a less
than or “<” operator block in the condition

Now go to the variable section and select
the “make a variable” button. Variable are
great for tracking certain things like score,
but just like in math they can be used to
store values. Name your new variable
“Angle” then drag a “set to” block into both
the first and second “if” blocks you placed
in the code for the ball sprite. Use the
drop down menus on both “set to” blocks
select your new Angle variable.

Navigate to the operator section again and
select the minus “-” operator and move it
into the area on your “set to” block that
allows you to type in a value. Notice in-
stead of typing in your own fixed number
you can place other numbers maintained
by the program instead (these are denoted
by curved edges and behave similarly to
the hexagonal blanks in “if” statements).
Do the same thing for the “set to” block in
the second “if” statement, but this time
use a plus “+” operator.

We’re going to add two other quick refinements
to our game. Before the “forever” block place a
“turn” block and choose a “pick random” block
from the operators section and put -180 in the
first blank and 180 in the second blank so what
direction the ball moves in at the beginning of
the game is random. Then we’ll modify the
“move” block just inside the “forever” block so
that as score increases the ball moves faster.

Now that the code for the ball is complete
lets finish setting up the play field. Begin by
right clicking one block on screen and dupli-
cating it. Move this block where you would
like and continue duplicating blocks until you
have as many as you like. As an example
we’ve provided a sample play field on the
right. Be sure to check the starting position
of the ball so that it doesn’t spawn in the
blocks.

Once this is complete ensure you place a victory condition in any of
your code. This can be accomplished with an “if” block with a condi-
tion dependent on score. Based on our example set the condition of
your “if” block by placing an equals block “=” from the operator sec-
tion in the condition and setting the first blank to the “Score” block in
the variable section and setting the second blank to the number of
blocks you have on the screen. Inside the “if” block make sure to
place a “stop all” block and preceding that place a “say” block with
something informing the player that they won the game. In our ex-
ample this block was placed in the code with ball within the forever
block.

To accomplish this place a plus block “+” over the 5 inside the block now. Then place a
multiply block “*” inside the second slot of the plus block “+”. Set the first blank to 4 and
place a “Score” block from the variable section inside the first blank of the multiply block
“*”. Now set the second blank in the multiply block “*” to the rate you want the speed of
the ball to increase by each time the player removes a block. The recommended value is
0.2. The new block and modified block are shown on the right, however the “forever”

One other concept we'll introduce at the end of our tutorial is the use of costumes. To begin

we'll design two sprites that will change the costume on the ball sprite. In our example we

have two paint cans. One of these paint cans contains the original color (light green) that the

ball starts as. The other paint bucket will be red. Now we'll select the ball sprite and select

the costumes tab located above the code. You should see the default costume which we set

as the light green ball. Click on the copy button next to that costume to create a second cos-

tume of the same shape. Now click the edit button on your new costume (which should de-

fault to the name costume 2) and use the paint bucket tool to fill the ball with red instead of

light green.

Extras

Now we'll create a few pieces of extra code to handle
this. Inside the “forever” block in the code for the
ball sprite create two “if” blocks. The condition for
the first one will be “if touching” the first paint can or
other sprite you'd like to change the color of the ball.
The condition for the second if block will be “if touch-
ing” the other color changing sprite. Now go to the
looks tab in the top left and select the "switch to cos-
tume" block and place one inside each "if" block. If
you want the ball to turn green when it hits the
green paint can use the drop down menu to select
costume 1 and for the red paint can choose costume
2. Now when the ball contacts the red paint can it
changes to red, and when it hits the green paint can
it switches back to green. We've also chosen to place
a "switch to costume" block before the "forever"
block to always reset the ball to green at the begin-
ning.

Now that the ball turns red lets put it to use. Right click one of your bricks and duplicate it as

you've done before, but now go to the costume tab and edit the default costume. Using the

paint bucket tool fill the inside of the block with red. Then select the script tab again and

switch the second condition in your "wait until" block to the color red instead of light green.

Now duplicate your new red block 9 more times and fill the gap left by your green blocks to

create one solid rectangle (look below). Now when the ball is red you can remove red blocks

and when the ball is green you can remove green blocks. Be sure to also change the victory

condition in the script section for the ball sprite so that victory is achieved when the score is

equal to 28, because you now have 28 blocks.

Scientific Applications

Now that Breakout is completed you should have a solid understanding of many of the key

component in Scratch. Now that you understand Scratch let’s talk about Scratch’s practical

application in education. Scratch is a programming language, it’s basic, however it’s also very

graphical and it’s easy to see the result of your code. This makes Scratch a simple to learn

programming language that is also fun and visually appealing making it a great way to intro-

duce younger audiences to very complex programming concepts. In addition Scratch can be

used to model scientific and mathematical concepts very easily. Perhaps while working

through Breakout you started to formulate other ways certain functions could be used or you

tweaked something, because you preferred the game to behave in a certain way. If that’s the

case, great! You are on your way to thinking about and programming your own content in

Scratch. If not, we’ve provided some alternate examples to show what Scratch is capable of

doing that perhaps you hadn’t thought about yourself.

Chemical Reactions

One great example shown left involves a chemical re-

action. This chemical reaction involves the combina-

tion of Na2 and 2 H2O’s. Each chemical is its own

sprite and upon contact a chemical reaction occurs.

After the reaction the byproducts are sent out and the

resulting chemicals from the reaction remain. Coding

this in Scratch is very simple and we’ll take a quick look

at and analyze the code.

At first glance this code isn't anything you haven't seen

before. A simple green flag to begin the code and a "say"

and "wait" block. Then there's a block we haven't en-

coutered, "broadcast." Broadcast is named so because it

can be viewed as, say, a radio signal. The programmer

decides the signal, in this case "go," and sets other code

to wait to begin until it "hears" the broadcast signal.

Now lets look at the code for the NaNa sprite.

Notice that in this case the code does have a

"when i receive" block that is waiting for "go"

to be broadcasted. Once this occurs the code

begins executing. The other code in this ex-

ample is nothing new, you can see that that

when the sprite comes into contact with

sprite 3 it hides itself and then broadcasts a

new signal to reveal other sprites and start

other lines of code

Physics

The code for this first sprite is very simple. Es-

sentially it states that when the flag is clicked

to move to the right until it's touching sprite 2.

The "wait" block is only being used as a means

to slow the rate of speed. Once this sprite is

touching sprite 2 this sprite hides itself and

broadcasts "hit" to initiate the code for the

other sprites.

The code for the uranium atom is also very

simplistic. Once it receives the "hit" broad-

cast it changes costume to uranium 236,

which then switches costume to what looks

like an explosion. Following the explosion

the sprite hides itself and broadcasts split,

which causes the sprites showing the by-

products of the breakdown of uranium 236.

Now, lets take a look at the code for Barium 141.

All of the byproduct sprites share very similar

code, but it's still reasonably complicated. Notice

this code doesn't begin to run until the "split" sig-

nal is received. At this point the sprite shows it-

self and sets two previously created variables (u

and v) to 15. Then the code enters the "repeat"

statement, which as indicated will execute 140

times. Inside the block the sprite is moved to co-

ordinates (u,v) and then u and v are both incre-

mented by one. Essentially this code moves the

sprite up to the right. Once it has finished mov-

ing the sprite is then hidden.

Mathematics

Scratch is also perfect for simulating mathematics. Say

for instance you have one sprite at x position 60 and an-

other at - 60. Perhaps when the green flag is pressed

sprite 1 leaves sprite position -60 moving right at 5 steps

per second while the sprite on the right leaves 5 seconds

later and moves left at 7 steps per second. This problem

sound familiar? Perhaps both of your sprites could be

trains? Now that they’re both moving we can create var-

iable to track their x-positions and when they equal both

can stop to show where they intersect. Or the program

could run until either train hit the opposite side they

started from to determine which train would reach the

other train’s station first.

Outside of strictly technical fields Scratch can al-

so be used to create short animations to help any

student grasp a concept. English could have an

animation outlining I before E except after C by

showing the word “Deciet” (incorrectly) then

making the I slide down and right while the E

takes it’s place, and finally ending by moving the

I up to make “Deceit.” Social Studies could ani-

mate any number of situations using Scratch.

Other subjects

Conclusion

Throughout this tutorial we’ve introduced you, trained you, and proven the usefulness of

Scratch. We began with the basics: installing, creating your first project, background, and

Sprites. Then, we moved on to the code: Controls, Motion, Sensing, Variables, Operators,

Looks, and Sounds. As we learned these thing we constructed the game “Breakout” to show

off what Scratch can accomplish. Finally, we showed how Scratch can be used in a wide varie-

ty of situations to assist in teaching and learning a concept. Scratch can be a powerful pro-

gramming language, but like any other programming language you just need to know, and

see, how it can be applied to multiple situations.

