
Type-and-effect systems are a powerful tool for program construction and verification. Type-
and-effect systems are useful because they can help reduce bugs in computer programs,
enable compiler optimizations and also provide a kind of program documentation. As
software systems increasingly embrace dynamic features and complex modes of compilation,
static effect systems have to reconcile over competing goals such as precision, soundness,
modularity, and programmer productivity. In this thesis, we propose the idea of combining
the static and dynamic analysis for effect systems to improve precision and flexibility.

We describe intensional effect polymorphism, a new foundation for effect systems
that integrates static and dynamic effect checking. Our system allows the effect of
polymorphic code to be intensionally inspected. It supports a highly precise notion of
effect polymorphism through a lightweight notion of dynamic typing. When coupled
with parametric polymorphism, the powerful system utilizes runtime information
to enable precise effect reasoning, while at the same time retains strong type safety
guarantees. The technical innovations of our design include a relational notion of
effect checking, the use of bounded existential types to capture the subtle interactions
between static typing and dynamic typing, and a differential alignment strategy to achieve
efficiency in dynamic typing. We also introduce a new kind of effect system, where the
computational effect of an expression can be programmatically reflected, passed around
as values, and analyzed at run time. A broad range of designs “hard-coded” in existing
effect-guided analyses can be supported through intuitive programming abstractions.

Finally, we show the potential benefit of intensional effects by applying it to an event-
driven system to obtain safe concurrency. The technical innovations of our system
include a novel effect system to soundly approximate the dynamism introduced
by runtime handlers registration, a static analysis to pre-compute the effects and a
dynamic analysis that uses the precomputed effects to improve concurrency. Our
design simplifies modular concurrency reasoning and avoids concurrency hazards.

Thursday, April 14th

10:00a.m. @ 223 Atanasoff

PhD
FINAL ORAL EXAMINATION

Yuheng Long
Faculty Advisor: Professor Hridesh Rajan

Formal Foundations for Hybrid Effect Analysis

Department of Computer Science

