QMDI Seminar - Predicted strong coupling of solid-state spins via a single magnon mode
Speaker:Professor Michael Flatté
University of Iowa
Title: Predicted strong coupling of solid-state spins via a single magnon mode
Abstract: We propose an approach to realize a hybrid quantum system composed of a diamond nitrogen-vacancy (NV) center spin coupled to a magnon mode of the low-damping, low-moment organic ferrimagnet vanadium tetracyanoethylene. We derive an analytical expression for the spin-magnon cooperativity as a function of NV position under a micron-scale perpendicularly magnetized disk, and show that, surprisingly, the cooperativity will be higher using this magnetic material than in more conventional materials with larger magnetic moments, due to in part to the reduced demagnetization field. For reasonable experimental parameters, we predict that the spin-magnon-mode coupling strength is g∼10 kHz. For isotopically pure 12C diamond we predict strong coupling of an NV spin to the unoccupied magnon mode, with cooperativity C=6 for a wide range of NV spin locations within the diamond, well within the spatial precision of NV center implantation. Thus our proposal describes a practical pathway for single-spin-state-to-single-magnon-occupancy transduction and for entangling NV centers over micron length scales.
Bio: Prof. Flatté received an AB degree in physics from Harvard University in 1988 and a PhD degree in physics from the University of California, Santa Barbara (UCSB) in 1992. After postdoctoral work at the Institute for Theoretical Physics at UCSB and in the Division of Applied Sciences at Harvard University, he joined the faculty at UI in 1995. He was director of UI’s Optical Science and Technology Center from 2010 to 2017. He is a Fellow of the American Association for the Advancement of Science and of the American Physical Society (APS), and was chair of the Division of Materials Physics of APS from 2016 to 2017. In 2019 he developed the first course on Quantum Engineering for the Pritzker School of Molecular Engineering at the University of Chicago. Prof. Flatté also has a courtesy appointment in the Department of Electrical and Computer Engineering at the University of Iowa as well as an adjunct appointment as professor in the Department of Applied Physics at Eindhoven University of Technology in the Netherlands.