Colloquium: Dr. Kush Varshney, IBM, Trustworthy Machine Learning

Dr. Kush Varshney
Monday, March 27, 2023 - 4:25pm to 5:25pm
Event Type: 


Trustworthy Machine Learning


We will discuss the concepts for developing accurate, fair, robust, explainable, transparent, inclusive, empowering, and beneficial machine learning systems. Accuracy is not enough when you’re developing machine learning systems for consequential application domains. You also need to make sure that your models are fair, have not been tampered with, will not fall apart in different conditions, and can be understood by people. Your design and development process has to be transparent and inclusive. You don’t want the systems you create to be harmful, but to help people flourish in ways they consent to. All of these considerations beyond accuracy that make machine learning safe, responsible, and worthy of our trust have been described by many experts as the biggest challenge of the next five years.

About Dr. Kush Varshney

Kush R. Varshney was born in Syracuse, New York in 1982. He received the B.S. degree (magna cum laude) in electrical and computer engineering with honors from Cornell University, Ithaca, New York, in 2004. He received the S.M. degree in 2006 and the Ph.D. degree in 2010, both in electrical engineering and computer science at the Massachusetts Institute of Technology (MIT), Cambridge. While at MIT, he was a National Science Foundation Graduate Research Fellow.

Dr. Varshney is a distinguished research scientist and manager with IBM Research at the Thomas J. Watson Research Center, Yorktown Heights, NY, where he leads the machine learning group in the Foundations of Trustworthy AI department. He was a visiting scientist at IBM Research - Africa, Nairobi, Kenya in 2019. He is the founding co-director of the IBM Science for Social Good initiative. He applies data science and predictive analytics to human capital management, healthcare, olfaction, computational creativity, public affairs, international development, and algorithmic fairness, which has led to the Extraordinary IBM Research Technical Accomplishment for contributions to workforce innovation and enterprise transformation, and IBM Corporate Technical Awards for Trustworthy AI and for AI-Powered Employee Journey.

He and his team created several well-known open-source toolkits, including AI Fairness 360AI Explainability 360Uncertainty Quantification 360, and AI FactSheets 360. AI Fairness 360 has been recognized by the Harvard Kennedy School's Belfer Center as a tech spotlight runner-up and by the Falling Walls Science Symposium as a winning science and innovation management breakthrough.

He conducts academic research on the theory and methods of trustworthy machine learning. His work has been recognized through paper awards at the Fusion 2009, SOLI 2013, KDD 2014, and SDM 2015 conferences and the 2019 Computing Community Consortium / Schmidt Futures Computer Science for Social Good White Paper Competition. He independently-published a book entitled 'Trustworthy Machine Learning' in 2022, available at He is a senior member of the IEEE.