Introduction

Multi-relational data—capture relations among multiple entities of interest.

Bayesian Multi-relational Clustering

Hanhui Shan and Arindam Banerjee

Department of Computer Science and Engineering

University of Minnesota, Twin Cities

Bayesian Multi-relational Clustering

• Given a data matrix denoting the relationship between row and column entities, obtaining row and column clusters simultaneously

• A Bayesian model allowing mixed membership on both sides

Mixed membership naïve Bayes models

• One-way Bayesian clustering

 • A naïve Bayes model with Dirichlet priors to allow mixed membership

 • Micro-precision

 | TFMMB | NB
 |------|------|
 | 0.634 | 0.629 |

 • Perplexity

 | TFMMB | NB
 |------|------|
 | 0.015 | 0.014 |

Discriminative latent Dirichlet allocation

• Introducing labels to latent Dirichlet allocation for classification

• Allow the number of classes to be larger than the number of topics

#topics increases from c to c+100. A higher accuracy is usually observed with a larger #topics.

DLDA is better than or comparable to other classification algorithms, including SVM.

Fast mixed membership naïve Bayes & Fast latent Dirichlet allocation

By using a fast variational inference algorithm, Fast MMNB and Fast LDA are about 10 times faster than standard MMNB and LDA, with a similar perplexity.

Future work—Bayesian multi-relational clustering

Book Model—One entity (User) is connected with multiple other entities (Actor, Movie, Other Users) through corresponding relations.

Tensor Model—Multiple entities (User, Movie, Word) are connected through one relation.

General case—A combination of Book Model and Tensor Model. Arbitrary forms of relationships