Problem 81. Define the tower function $T : \mathbb{N} \to \mathbb{N}$ by the recursion

\[
T(0) = 1, \\
T(n + 1) = 2^{T(n)}.
\]

Thus $T(n)$ is a “tower” of n 2’s. Prove that there are infinitely many strings $x \in \{0, 1\}^*$ that are extremely compressible in the sense that

\[
T(C(x)) < |x|.
\]

Use the KC Nonregularity Lemma to prove that the languages in problems 82 – 84 are not regular.

Problem 82. $\{0^n1^n \mid n \in \mathbb{N}\}$

Problem 83. $\{w \in \{0, 1\}^* \mid |w| \text{ is a perfect square}\}$

Problem 84. $\{0^m1^n \mid m, n \in \mathbb{Z}^+ \text{ and } \gcd(m, n) = 1\}$
(Note: $\gcd(m, n)$ is the greatest common divisor of m and n.)

Problem 85. Use the KC Nonregularity Lemma to prove that no infinite subset of $\{0^n1^n \mid n \in \mathbb{N}\}$ is regular.

Notation. For $x \in \{0, 1\}^*$, let $bd(x)$ be the *bit-doubling* of x, i.e.,

\[
bd(\lambda) = \lambda
\]

and, for $x \in \{0, 1\}^*$ and $b \in \{0, 1\}$,

\[
bd(xb) = bd(x)bb.
\]

For $x, y \in \{0, 1\}^*$, let

\[
\langle x, y \rangle = 0^{|x|}1xy
\]
and
\[\langle\langle x, y \rangle\rangle = bd(x)01y. \]

(Both \(\langle, \rangle \) and \(\langle\langle, \rangle\rangle \) are called \textit{string-pairing functions}.) In problems 86 – 87, let
\[
A = \{ \langle x, y \rangle \mid x, y \in \{0, 1\}^* \}, \\
B = \{ \langle\langle x, y \rangle\rangle \mid x, y \in \{0, 1\}^* \}.
\]

Problem 86. Prove that one of \(A \) and \(B \) is regular.

Problem 87. Prove that the other of \(A \) and \(B \) is not regular.

Recall that \(PAL = \{ x \in \{0, 1\}^* \mid x \text{ is a palindrome, i.e., } x^R = x \text{, where } x^R \text{ is “} x \text{ written backwards”} \} \).

Recall also that the \textit{floor} of a real number \(\alpha \) is
\[\lfloor \alpha \rfloor = \max\{ n \in \mathbb{Z} \mid n \leq \alpha \}. \]

Problem 88.
(a) Prove that, for all \(n \in \mathbb{N} \),
\[|PAL \cap \{0, 1\}^n| = 2\left\lfloor \frac{n+1}{2} \right\rfloor. \]
(b) Prove that there are infinitely many strings \(x \in PAL \) satisfying
\[C(x) \geq \left\lfloor \frac{|x| + 1}{2} \right\rfloor. \]

(Hence the bound of problem 77 is nearly tight.)