This is a closed-book, closed-notes, no-calculator, no-cellphone, individual-effort examination. All answers should be explained, at least briefly. Please do all your work on these pages.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
1. (30 points) Design a DFA that decides the language

\[A = \{ x \in \{0,1\}^* \mid \text{num}(x) \text{ is divisible by 2 or 3 but not by 6} \} \]

(or use product construction with XOR as the Boolean function)
2. (30 points) Given $x, y \in \{0,1\}^*$, say that x is a 2-deletion of y if x is the result of deleting at most 2 bits of y.

For example, the strings 1101001, 110001, and 11001 are three of the many 2-deletions of the string 1101001.

Given a language $A \subseteq \{0,1\}^*$, let

$$D_2(A) = \{ x \in \{0,1\}^* \mid \text{there exists } y \in A \text{ such that } y \text{ is a 2-deletion of } x \}\.$$

Prove: If A is regular, then $D_2(A)$ is regular.

Let $M = (Q, \{0,1,\lambda\}, \delta, q_0, F)$ be a DFA such that $L(M) = A$. Consider the NFA with λ-transitions

$$N = (Q \times \{0,1,\lambda\}, \{0,1,\lambda\}; \Delta, (s,0), F \times \{0,1,\lambda\}),$$

where

- $\Delta((q,a), b) = \{\delta(q,b), a\lambda\}$ for all $q \in Q$, $a \in \{0,1,\lambda\}$, and $b \in \{0,1\}^*$;

- $\Delta((q,a), \lambda) = \{\delta(q,a\lambda), (\delta(q,1), a+1)\}$ for all $q \in Q$ and $a \in \{0,1\}$;

and

- $\Delta((q,\lambda), \lambda) = \emptyset$ for all $q \in Q$.

Then $L(N) = D_2(A)$, so $D_2(A)$ is regular. \(\square\)
3. (30 points) Given languages $A, B, C \subseteq \{0, 1\}^*$, let D be the set of all strings $x \in \{0, 1\}^*$ with the following two properties.
 (i) $x \not\in A$.
 (ii) There exist $n \in \mathbb{N}$ and $u_1, \ldots, u_n \in \{0, 1\}^*$ such that $x = u_1 u_2 \cdots u_n$ and each $u_i \in A \cup B \cup C$.

Prove: If $A, B,$ and C are regular, then D is regular.

Let $\alpha, \beta,$ and γ be regular expressions such that $L(\alpha) = A$, $L(\beta) = B$, and $L(\gamma) = C$. Then

$$D = L((\alpha + \beta \gamma)^*) - L(\alpha)$$

is the difference of two regular languages, hence is regular. \square
4. (30 points) Design a DFA that is equivalent to the following NFA.

Using the subset construction gives the DFA.
5. (30 points) Give a proof or counterexample for each of the following two statements.

(a) If \(A \leq \Sigma^*\) is regular and \(B \leq \Theta^\Sigma^*\) is c.e., then \(A \cap B\) is c.e.

Counterexample: If \(A = \Sigma^*\) and \(B = K\) is the diagonal halting problem, then \(A\) is regular and \(B\) is c.e., but \(A \cap B = K^c\) is not c.e.
S, continued.

(b) If $A \subseteq \{0,1\}^*$ is regular and $B \subseteq \{0,1\}^*$ is c.e., then $B \setminus A$ is c.e.

Proof. Assume the hypothesis. Then

$$B \setminus A = B \cap A^c,$$

and A^c is regular, hence decidable, hence c.e., so $B \setminus A$ is the intersection of two c.e. languages, hence c.e. \square
6. (40 points) For each of the following conditions either

give an example of an object
of the indicated type

or

state that no such object exists.
(No proofs are required.)

(a) A pair of regular expressions \(\alpha_1 \) and \(\alpha_2 \) such that \(L(\alpha_1) \cap L(\alpha_2) \) is not denoted by any regular expression.

No such object.

(b) A nonregular language \(B \subseteq \{0,1\}^* \) such that \(|B \cap \{0,1\}^n| \geq 2^n - 1 \) for all \(n \in \mathbb{N} \).

\[B = \{0,1\}^* \setminus \{0^n 1^n \mid n \in \mathbb{N} \} \]
6. continued.

(e) A language C that is c.e. and co-c.e. but not regular.

$$C = \{0^n1^n \mid n \in \mathbb{N} \}.$$

(d) A language D that is co-c.e. but not decidable.

$$D = K^c.$$

(e) A pair of languages $E_1, E_2 \subseteq \{0,1\}^*$ such that $E_1 \leq_m E_2$ and $E_2 \leq_m E_1$ but $E_1 \neq E_2$.

$$E_1 = \{0^n1^n \mid n \in \mathbb{N} \}, \quad E_2 = \{1^n0^n \mid n \in \mathbb{N} \}.$$
(f) A pair of languages F_1 and F_2 such that $F_1 \subseteq F_2$ and F_2 is decidable, but F_1 is not r.e.

$$F_1 = K^c, \quad F_2 = \{0, 1\}^*.$$

(g) A natural number n such that $C(x) < n$ holds for all $x \in \{0, 1\}^n$.

No such n exists.

(h) Two uncomputable real numbers x and y whose sum is computable.

$$x = \sum_{n \in \mathbb{N}} 2^{-n}, \quad y = -x.$$
7. (40 points) Define \(h : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+ \) by
\[
h(n) = \begin{cases}
\frac{n}{2} & \text{if } n \text{ is even} \\
3n+1 & \text{if } n \text{ is odd}
\end{cases}
\]
For each \(k \in \mathbb{N} \) define \(h^k : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+ \) by the recursion
\[
h^0(n) = n, \\
h^{k+1}(n) = h(h^k(n)).
\]
Prove that the set
\[
A = \{ n \in \mathbb{Z}^+ \mid \text{there exists } k \in \mathbb{N} \text{ such that } h^k(n) = 1 \}
\]
is computably enumerable.

Let \(B = \{ (n, k) \mid h^k(n) = 1 \} \). Then \(B \) is decidable and \(A = \exists B \), so \(B \) is c.e.
Name KEY
8. (40 points) Let \[x = \sum_{n=1}^{\infty} 2^{-n^2} \]
be the real number whose binary expansion is
\[x = 0.100100001000000100\ldots \]
(This expansion is nonrepeating, so \(x \) is an irrational number.)
Prove that \(x \) is a computable real number.

Define \(f: \mathbb{N} \rightarrow \mathbb{Q} \) by
\[f(r) = \sum_{n=1}^{r} 2^{-n^2} \]
for all \(r \in \mathbb{N} \). Then \(f \) is computable. For all \(r \in \mathbb{N} \) we have
\[0 \leq x - f(r) = \sum_{n=r+1}^{\infty} 2^{-n^2} < \sum_{n=r+1}^{\infty} 2^{-r} = 2^{-r} \]
so \(|f(r) - x| < 2^{-r} \). Hence \(f \) testifies that \(x \) is computable. \[\square \]
Name ____________________

KEY
9. (40 points) Let \(n \) be a positive integer, and let \(A \subseteq \{0,1\}^{3n} \) satisfy \(|A| \leq 2^n\). Prove that there is a constant \(c \in \mathbb{N} \) such that, for all \(x \in A^* \),

\[
C(x) \leq \frac{|x|}{3} + c.
\]

Assume the hypothesis. Since \(|A| \leq 2^n\) there is a function \(f : \{0,1\}^n \rightarrow A \). Let \(M \) be a TM such that, for all \(m \in \mathbb{N} \) and \(\pi_1, \ldots, \pi_m \in \{0,1\}^n \),

\[
M(\pi_1, \ldots, \pi_m) = f(\pi_1) \cdots f(\pi_m),
\]

and let \(c = cm \) be an optimality constant for \(M \).

To see that \(c \) has the desired property, let \(x \in A^* \). Then there exist \(u_1, \ldots, u_m \in A \) such that \(x = u_1 \cdots u_m \). Since \(f \) is onto, there exist \(\pi_1, \ldots, \pi_m \in \{0,1\}^n \) such that each \(f(\pi_i) = u_i \).

Then

\[
M(\pi_1, \ldots, \pi_m) = f(\pi_1) \cdots f(\pi_m) = u_1 \cdots u_m = x,
\]

so

\[
C(x) \leq C_M(x) + c \leq |\pi_1, \ldots, \pi_m| + c = mn + c = \frac{3mn}{3} + c = \frac{|x|}{3} + c.
\]
10. (40 points) For each $n \in \mathbb{N}$ define the string $x_n \in \{0,1\}^{2n}$ by the recursion

$$
\begin{align*}
 x_0 &= \lambda, \\
 x_{2n+1} &= x_{2n} 1^{2n+1}, \\
 x_{2n+2} &= x_{2n+1} 0^{2n+2}.
\end{align*}
$$

Thus, for example,

$$x_5 = 1001110000011111.$$

Use the KC nonregularity theorem to prove that the language

$$A = \{ x_n \mid n \in \mathbb{N} \}$$

is not regular.

Let $d \in \mathbb{N}$. Choose $k \in \mathbb{N}$ such that

$$C(12^{k+1}) > d+1.$$ Let $x = x_{2k}$. Then

$$C(\sqrt{x}) = C(12^{k+1}) > d+1 = d + \log 2.$$
Name: KEY